SPSS预测分析选“专家建模器”得到ARIMA模型(0,1,0)...d=1,q=p=0,arima(0,1,0)该模型是随机游走模型(醉汉模型)
x(t)=x(t-1)+ξ(t)
E(ξ(t))=0,var(ξ(t))=σ^2,E(ξ(t)ξ(s))=0,s不等于t
E(x(s)ξ(t))=0,任意s
用spss怎么进行arima模型建模
Arima模型在SPSS中的操作
ARIMA,就是autoregressive integrated moving-average model,中文应该叫做自动回归积分滑动平均模型,它主要使用与有长期趋势与季节性波动的时间序列的分析预测中。
ARIMA有6个参数,ARIMA (p,d,q)(sp,sd,sq),后三个是主要用来描述季节性的变化,前三个针对去除了季节性变化后序列。为了避免过度训练拟合,这些参数的取值都很小。p与sp的含义是一个数与前面几个数线性相关,这两参数大多数情况下都取0, 取1的情况很少,大于1的就几乎绝种了。d与sd是差分,difference,d是描述长期趋势,sd是季节性变化,这两个参数的取值几乎也都是0,1,2,要做几次差分就取几作值。q与sq是平滑计算次数,如果序列变化特别剧烈,就要进行平滑计算,计算几次就取几做值,这两个值大多数情况下总有一个为0,也很少超过2的。
ARIMA的思路很简单,首先用差分去掉季节性波动,然后去掉长期趋势,然后平滑序列,然后用一个线性函数+白噪声的形式来拟合序列,就是不断的用前p个值来计算下一个值。
用SPSS来做ARIMA大概有这些步骤:
1定义日期,确定季节性的周期,菜单为Data-Define dates
2画序列图来观察数值变化,菜单为Graph-sequence / Time Series - autoregressive
3若存在季节性波动,则做季节性差分,Graph- Time Series - autoregressive,先做一次,返回2观察,如果数列还存在季节性波动,就再做一次,需要做几次,sd就取几
4若观察到差分后的数列中有某些值远远大于平均值,则需要做平滑,做几次sq就取几
5然后看是否需要做去除长期趋势的差分,确定p与sp
6然后在ARIMA模型中测试是否存在其他属性影响预测属性,如果Approx sig接近0,则说明该属性可以加入模型,作为独立变量,值得注意的是,如果存在突变,可以根据情况自定义变量,这个在判断突变的原因比重时特别有用。
7然后用以确定的参数与独立变量进行拟合预测。
8最后,用Graph- Time Series - autoregressive来判断一下拟合产生的误差ERR,如果不存在明显特征,可以看作是无规律的随机白噪声,就可以认为建模成功。
9最后使用ARIMA模型进行预测即可
感觉在电信行业的KPI预测中,最有应用前景的是第六步,除了可以找到那些变量对目标值有影响外,还能确定在目标属性的变化中,不同原因的影响比例,如多少程度是由于竞争对手的失误,多少程度是因为自己表现好,多少程度是因为市场大环境变化了。此外,通过预测值,可以指导计划的编制和指标的制定,还能起到一点业务预警的作用。意义并不是很大,不过总比没有好~~
20180219-001墙饰挂画
arima建模怎么看出从几阶拖尾
建模就是建立模型,就是为了理解事物而对事物做出的一种抽象,是对事物的一种无歧义的书面描述。
建立系统模型的过程,又称模型化。建模是研究系统的重要手段和前提。凡是用模型描述系统的因果关系或相互关系的过程都属于建模。因描述的关系各异,所以实现这一过程的手段和方法也是多种多样的。可以通过对系统本身运动规律的分析,根据事物的机理来建模;也可以通过对系统的实验或统计数据的处理,并根据关于系统的已有的知识和经验来建模。还可以同时使用几种方法。