数据仓库模型的设计有哪些1、星型模型 星型模型是一种由一点向外辐射的建模范例,中间有一单一对象沿半径向外连接到多个对象。星型模型反映了最终用户对商务查询的看法:销售事实、赔偿、付款和货物的托运都用一维或多维描述(按月、产品、地理位置)。
数据仓库的星型模型的事实表和维表的设计!这个不难吧,维表不用想啦,表结构直接按照你说的那些信息做就可以了;
销售事实表的结构:
产品外键,日期外键,客户外键,销售代理外键,销售量,销售价,成本,销售金额,利润;
星型模型就是以销售事实表为中心,使用维度外键与各个维度相连就可以了。
Z45-1109欧式鞋柜收纳柜
怎样的架构设计才是真正的数据仓库架构是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于RDBMS中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息等等;
数据的存储与管理
是
整个数据仓库系统的核心。数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形
式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照
主题进行组织。数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。
OLAP服务器
对分析需要的数
据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:ROLAP(关系型在线分析处理)、
MOLAP(多维在线分析处理)和HOLAP(混合型线上分析处理)。ROLAP基本数据和聚合数据均存放在RDBMS之中;MOLAP基本数据和聚合数
据均存放于多维数据库中;HOLAP基本数据存放于RDBMS之中,聚合数据存放于多维数据库中。
元数据是描述数据仓库内数据的结构和建立方法的数据。可将其按用途的不同分为两类,技术元数据和商业元数据。
技术元数据是数据仓库的设计和管理人
员用于开发和日常管理数据仓库使用的数据。包括:数据源信息;数据转换的描述;数据仓库内对象和数据结构的定义;数据清理和数据更新时用的规则;源数据到
目的数据的映射;用户访问权限,数据备份历史记录,数据导入历史记录,信息发布历史记录等。
商业元数据从商业业务的角度描述了数据仓库中的数据。包括:业务主题的描述,包含的数据、查询、报表;
元
数据为访问数据仓库提供了一个信息目录(informationdirectory),这个目录全面描述了数据仓库中都有什么数据、这些数据怎么得到的、
和怎么访问这些数据。是数据仓库运行和维护的中心,数据仓库服务器利用他来存贮和更新数据,用户通过他来了解和访问数据。
为了特定的应用目的或应用范围,而从数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据(subjectarea)。在数据仓库的实施过程中往
往可以从一个部门的数据集市着手,以后再用几个数据集市组成一个完整的数据仓库。需要注意的就是在实施不同的数据集市时,同一含义的字段定义一定要相容,
这样在以后实施数据仓库时才不会造成大麻烦。
国外知名的Garnter关于数据集市产品报告中,位于第一象限的敏捷商业智能产品有
QlikView,
Tableau和SpotView,都是全内存计算的数据集市产品,在大数据方面对传统商业智能产品巨头形成了挑战。国内BI产品起步较晚,知名的敏捷型
商业智能产品有PowerBI, 永洪科技的Z-Suite,SmartBI,FineBI商业智能软件等,其中永洪科技的Z-Data
Mart是一款热内存计算的数据集市产品。国内的德昂信息也是一家数据集市产品的系统集成商。
为用户访问数据仓库提供手段。有数据查询和报表工具;应用开发工具;管理信息系统(EIS)工具;在线分析(OLAP)工具;数据挖掘工具